文章摘要
引用本文:郭恩特,陈志峰,范振嘉,黄立勤,潘 林.图像和惯性传感器相结合的摄像机定位和物体三维位置估计[J].福州大学学报(自然科学版),2018,46(4):481~489
图像和惯性传感器相结合的摄像机定位和物体三维位置估计
Estimation of camera location and objects′ 3D position combining image and inertial sensor
  
DOI:10.7631/issn.1000-2243.17318
中文关键词: 卷积神经网络  扩展卡尔曼滤波  摄像机定位  物体三维位置估计
英文关键词: convolution neural network  extended Kalman filter  camera location  3D-objects position estimation
基金项目:
作者单位
郭恩特 福州大学物理与信息工程学院福建 福州 350116 
陈志峰 福州大学物理与信息工程学院福建 福州 350116 
范振嘉 福州大学物理与信息工程学院福建 福州 350116 
黄立勤 福州大学物理与信息工程学院福建 福州 350116 
潘 林 福州大学物理与信息工程学院福建 福州 350116 
摘要点击次数: 107
全文下载次数: 67
中文摘要:
      为解决无人驾驶中车辆定位与周围场景中物体三维位置估计,采用卷积神经网络(CNN)检测图像中的物体,用扩展卡尔曼滤波(EKF)方法融合惯性传感器测量得到的加速度和角速度,同时估计摄像机位置和物理世界中物体三维位置. 图像结合惯性传感器(IMU)信息,克服了单目摄像机估计得到的摄像机位置和物体三维位置的尺度不确定性;结合卷积神经网络检测物体提高特征点匹配准确度,实现对物体在三维世界中的位置通用的估计. 在实验部分用Matlab分别模拟仿真场景和现实场景的数据库KITTI,有效估计摄像机运动和场景中物体三维位置估计.
英文摘要:
      In order to estimate the three-dimensional position of the objects in the surrounding scene and camera location,we use the convolution neural network to detect the objects in the image combining the acceleration and angular velocity measured by the inertial sensor with the extended Kalman filter method. The image combined with the information from inertial sensor overcomes the scale uncertainty of the position of camera and objects. Combining CNN can improve the accuracy of feature point matching,meanwhile estimating the position of the object in the three-dimensional world. In the experimental,we use Matlab to simulate a scene and use KITTI database,which can effectively estimate the three-dimensional position camera and objects in scene.
查看全文   查看/发表评论  下载PDF阅读器
关闭