文章摘要
引用本文:黄朝雅,何建农.结合NSCT和区域特征的图像融合新算法[J].福州大学学报(自然科学版),2017,45(1):80~85
结合NSCT和区域特征的图像融合新算法
A novel image fusion algorithm based on NSCT and regional features
  
DOI:10.7631/issn.1000-2243.2017.01.0080
中文关键词: 图像融合  非下采样Contourlet变换  区域平均能量  拉普拉斯能量和
英文关键词: image fusion  nonsubsampled Contourlet transform  regional average energy  Laplace energy sum
基金项目:
作者单位
黄朝雅 福州大学数学与计算机科学学院福建 福州 350116 
何建农 福州大学数学与计算机科学学院福建 福州 350116 
摘要点击次数: 258
全文下载次数: 200
中文摘要:
      提出一种把非下采样Contourlet变换(NSCT)和区域特征相结合的图像融合新方法. 该方法能够获取更好的空域和频域中的局部特征,同时提高融合图像的质量. 用NSCT对已经配准的源图像在不同尺度和方向进行分解,低频子带分量采用区域平均能量和匹配度相结合的融合规则,高频子带分量使用改进的拉普拉斯能量和取大的融合规则. 然后,利用逆NSCT变换对图像重构得到融合结果. 实验结果表明,新方法优于其他三个常用的方法,且较好地保留图像的边缘和细节信息.
英文摘要:
      A novel image fusion algorithm is proposed based on nonsubsampled Contourlet transform (NSCT) and regional features. This method can obtain better the local features of the spatial and frequency domain,while improving the quality of the fusion image. Firstly,two primitive matched images are decomposed at multi-scale and multi-direction by NSCT. Then the fusion rule based on regional average energy and the average energy matching degree is used to fuse the low frequency subband components. The high frequency subband components by using improved sum of Laplace energy. Finally,the fusion result of image reconstruction is obtained through inverse NSCT. The results of simulation show that this novel method are better than the other three common image fusion methods.The test results can preserve a good edge and many detail information.
查看全文   查看/发表评论  下载PDF阅读器
关闭